GB-TRANSFER 固件用户手册

1 产品说明

GB-TRANSFER 固件是配合 CC2530 无线模块使用的软件系统,该固件可实现简便可靠地点对点无线传输,当节点之间的物理距离大于无线通信距离时,可配置使用中继模块进行中继传输。使用该固件的网络拓扑如下图 1.1 及图 1.2 所示:

图 1.1: 点对点数据传输拓扑示意图

图 1.2: 带中继的点对点数据传输拓扑示意图

节点与节点、节点与中继之间使用 2.4G 无线传输,节点与 PC 或其他 MCU 使用 UART 连接。这样,可实现数据的点对点无线透明传输,在传输的数据格式上,可选择使用预设固定帧格式或自由的非帧格式进行,详见本文档第 5、第 6 小节。

2 GB-TRANSFER 固件使用步骤

GB-TRANSFER 固件的使用步骤如下:

- 1)使用GB_RFconfig PC 软件或通用串口助手对出厂固件进行注册(未经注册认证的模块将不能正常使用)。
- 2)使用 GB_RFconfig PC 软件或通用串口助手对固件的运行参数进行配置,详见第 3、第 4 小节。
- 3)根据应用需求,选择注册和配置中继模块固件,如果无需中继,则跳过此步骤。
 - 4) 根据应用数据结构及方式,选择非帧模式或帧模块使用模块,进行点对

点数据传输。

3 使用 GB_RFconfig PC 软件配置固件

在使用 GB-TRANSFER 固件之前,必须对出厂固件进行注册认证和参数配 置。GB RFconfig 为本公司的专用配套固件配置软件,使用该软件,配合专用 Dongle 则可简便的对固件进行注册和配置。 GB-TRANSFER 固件的可配置参数 分为串口参数、无线参数、用户参数,参数配置可永久保存,也可重新进行配置。 参数详细说明如下表 3.1:

表 3.1 GB TRANSFER 的可配置参数列表

参	数(单位)	取值范围	默认值	参数说明
串口	波特率	2400~230400	115200	串口通信的波特率, 其他固定为 8 位数据 位、无校验位、1 位停 止位。
参数	串口组包长 度(B)	10~100	60	串口所获取的数据在 达到此值时,立刻将 数据通过 RF 发送出 去。[帧模式下无效]
	发射功率 (dbm)	-2-21	20	RF 发送时的发送功率,功率越大,发射距离越远。
无	发射信道	发射信道 11~26		RF 通信时的信道,不同信道的节点不可通信。
线参数	PANID	0x0001~0xFFFE	0x1220	RF 通信时的个域网 ID, 不同PANID 的节 点间不可通信。
	本节点地址	0x0001~0xFFFE	IEEE 地址 后 2 字节	通信时的地址,所设 置的节点地址应该互 异。
	目标节点地	0x0001~0xFFFF	0xFFFF	通信时的目标地址,

	址			如目标地址为 0xFFFF,则为广播, 否则为单播。默认广 播。[帧模式下无效]
用 户	用户识别码	0x00000000000000000000 0xFFFFFFFFFFFFFF	0x00000000 00000000	用于保证用户私有模 块互相通信的识别 码,用户的私有密钥。
参数	工作模式	0-1	0	0: 非帧模式1: 帧模式默认为非帧模式

一、GB_RFconfig 界面如下图 3.1 所示。

GB_RFconfig 界面

二、使用串口线连接 PC 与 Dongle,选择串口号,输入通讯密码与 PANID, 选择信道,点击"连接"按钮,PC 将与 Dongle 建立连接,如下图 3.2 所示。注 意:对于出厂固件,通讯密码、PANID、信道为默认值,否则请根据自己的配置 情况进行修改。

图 3.2: GB RFconfig连接 Dongle 成功示意图

三、点击"搜索"按钮,在 Dongle 周围且具有相同通讯密码、PANID、信道的模块将显示出来,品蓝色背景显示的节点为未注册节点,在使用之前必须进行注册,如图 3.3 所示。

图 3.3: GB RFconfig 搜索节点示意图

四、对节点进行注册:双击待注册节点信息所在行,使用本公司官方提供的注册码(每个节点具有唯一的注册码)填入"注册码"一栏,然后点击"授权"

按钮。注册成功后,节点信息所在行变为白色背景,此时可对节点进行参数设置和使用。如图 3.4 所示。注意:请务必使用正确的注册码进行授权,否则将无法正常使用节点进行数据传输。

图 3.4: GB RFconfig 注册节点示意图

五、配置固件运行参数:双击已授权节点,其当前参数将自动填充到各参数设置栏中,修改需要设定的参数,点击"配置",右下脚提示栏提示"……设置成功",则成功设定运行参数,重新点击"搜索",显示节点的新工作参数。如图 3.5 所示。注意:如果修改了节点的通讯密码、PANID或信道,则需要同步修改 Dongle的参数才能搜索到节点。

图 3.5 GB RFconfig 配置节点示意图

4 使用通用串口助手配置固件

除了使用第3节介绍的GB RFconfig 工具对固件进行注册和配置外,也可使 用普通的串口助手工具进行注册和配置,步骤如下:

一、设置串口工具参数为:波特率 115200,8N1,并且选择使用 16 进制接 收和发送数据,如图 4.1 所示。

图 4.1 串口助手工具设定

二、配置 Dongle 工作参数:使用串口线连接 PC 与 Dongle,串口工具按如 下格式发送数据给 Dongle,设定通讯密码、信道、PANID,此三者信息须与待 配置节点一致。

SOF LEN C	CMD 通讯密码	6 信道	PANID	EOF
-----------	----------	------	-------	-----

0x7E

设置成功后, Dongle 将按如下格式进行反馈。

SOF	LEN	CMD	EOF
0x7E	0x02	0x81	0xCE

如图 4.2 所示。

图 4.2 设定 Dongle 工作参数

三、搜索节点:按如下格式发送数据给 Dongle, Dongle 将反馈搜索到的节点信息。

搜索节点发送数据格式:

SOF	LEN	CMD	EOF
0x7E	02	0x02	0xCE

搜索节点反馈数据格式:

SOF	LEN	CMD	IEEE 地址	波特率	包长	信道	发射功率	PANID
0x7E	0x2E	0x82	8Bytes	1Byte	1Byte	1Byte	1Byte	2Bytes

本节点 ID	目标节点 ID	通讯密码	设备名	工作模式	是否授权	EOF
2Bytes	2Bytes	8Bytes	16Bytes	1Byte	1Byte	0xCE

注:对于工作模式为帧格式工作方式的节点,包长、目标节点 ID 域无效。如图 4.3 所示。

图 4.3 搜索节点

四、注册节点:使用本公司提供的注册码对固件进行授权,授权的数据格式如下:

授权数据格式:

SOF	LEN	CMD	IEEE 地址	注册码	EOF
0x7E	0x0E	0x04	8BYTE	4Bytes	CE

授权后的信息反馈与搜索时反馈一致。

五、配置固件运行参数:使用如下数据格式对节点的固件运行参数进行配置, 配置后,将进行相应的反馈。

配置节点数据格式:

SOI	7	LEN	CMD	IEEE 地址	波特率	包长	信道	发射功率	PANID
0x7	Е	0x2D	0x03	8Bytes	1Byte	1Byte	1Byte	1Byte	2Bytes

本节点 ID	目标节点 ID	通讯密码	设备名	工作模式	EOF
2Bytes	2Bytes	8Bytes	16Bytes	1Byte	0xCE

注:对于工作模式为帧格式工作方式的节点,包长、目标节点 ID 域无效。 串口波特率域对应关系:

0---2400

1---4800

2---9600

3---19200

4---38400

5---57600

6---115200

7---230400

配置节点信息反馈数据格式:

SOF	LEN	CMD	IEEE 地址	RESULT	EOF
0x7E	0x0B	0x83	8BYTE	1BYTE	CE

RESULT 对应表如下:

0	成功
1	波特率参数不合法
2	ABOUTOVER 参数不合法【帧模式无效】
3	信道参数不合法

4	发射功率参数不合法
5	PANID参数不合法
6	本节点短地址参数不合法
7	目的节点短地址参数不合法【帧模式无效】
8	运行模式参数不合法
255	写入失败

5 非帧模式的使用

方法

在对固件进行授权注册及运行参数设定后,则可正常使用节点,节点可完成数据的无线点对点传输,一端从 UART 接收数据,原样从对端节点 UART 输出。

本固件在接收 UART 数据时,可使用不具有任何字段含义的非帧模式,也可使用本固件设定的具有字段含义的帧模式,本小节介绍非帧模式的使用方法。

固件出厂默认为非帧模式,在非帧模式下,数据发送到参数设定的目标地址 节点,可双向对发,当目标地址节点为全F时,则为广播,所有物理范围内的节 点将收到数据并从 UART 输出。

非帧模式可发送任意数据,不具有任何数据格式。如发送(以下均为 16 进制): 11 22 33 44 ab cd ef

对端节点将收到一模一样的该数据。

6 帧模式的使用方法

在使用帧模式传输数据之前,必须设定收发节点的工作模式均为帧工作模式,在帧模式下,节点传输的数据具有设定的帧格式,具体如下表所示:

帧头(SOF)	长度(Len)	目的地址	接收信号强 度(RSSI)	数据(Data)	帧尾 (EOF)
0x7E	1Byte	2Bytes	1Byte	N Bytes	0xCE

注: 1、长度域长度包含本身,但不包含帧头和帧尾,支持最大长度为 100 字节。

2、接收信号强度域,在发送时该域无效。

如发送以下一帧数据为合法数据(以下均为 16 进制):

7E 0F 12 34 00 88 88 88 88 88 88 88 88 88 88 88 CE

目的地址为 1234 的节点将收到(0x50 为信号强度指示):

7E 0F 12 34 50 88 88 88 88 88 88 88 88 88 88 88 CE

7 中继的使用方法

当两点之间物理距离较远,无法直接通信时,则须选择中继对数据进行多跳中继,将中继节点布置在节点物理区域之间即可,中继节点可对所有它能侦听到节点数据进行中继,使用中继的步骤如下:

- 一、使用中继固件。
- 二、为中继固件进行注册授权,方法与普通节点一样。
- 三、为中继固件进行参数设定,方法与普通节点一样,中继节点有效的运行 参数为:发射功率、信道、PANID、本节点地址,用户密码。其他参数可忽略。 四、部署中继节点。

8 恢复出厂设置

当用户忘记所使用节点的工作参数时,可恢复出厂设置,恢复出厂设置后,所有参数还原为默认值,见表 3.1,恢复出厂设置的方法为:短接 P1_5 与 P1_6 两个引脚 1 秒钟以上即可。